Подписка

To, что сегодня наука, — завтра техника.
 Эдвард Теллер

 

Промышленная очистка поверхностей как отдельное направление технологического развития сформировалось довольно давно. При этом, как правило, очистка не очень заметна при рассмотрении отдельных процессов в промышленности, хотя и является важным, а в некоторых случаях крайне важным процессом в цикле производственной деятельности. Важность промышленной очистки определяется тем, что она напрямую влияет на качество выпускаемой продукции, ее функциональность и безопасность.
Современными методами чистки материалов являются: химический (рис. 1), термохимический, термический и механический, включая пескоструйный (рис. 2). Все эти технологии имеют свои преимущества и недостатки. К недостаткам большинства методов можно отнести трудоемкость, ресурсозатратность, неэкологичность и недостаток эффективности. Однако есть инновационная технология, которая превосходит многие из них. Речь идет о технологии промышленной лазерной очистки.

 

Рис. 1. Химическая обработка

Рис. 1. Химическая обработка

Рис. 2. Пескоструйная или дробеструйная обработка

Рис. 2. Пескоструйная или дробеструйная обработка

 

 

О ТЕХНОЛОГИИ

 

Промышленная лазерная очистка, или абляция — это процесс очистки/снятия инородного слоя материала с обрабатываемой твердой поверхности путем облучения его лазерным лучом.

 

Бельгийская компания P‑Laser — один из основоположников этой технологии — смогла объединить накопленный обширный опыт в области применения различных методов для очистки материалов и преимущества лазера. Принцип действия работы установок лазерной очистки (рис. 3–5) заключается в том, что материал при поглощении энергии от излучения лазера очень быстро нагревается, что приводит к его испарению или растрескиванию. При этом поверхность, расположенная ниже, не подвергается воздействию и остается нетронутой, т. е. готовой к дальнейшему технологическому процессу.

Рис. 3. Система лазерной очистки

Рис. 3. Система лазерной очистки

Рис. 4. Принцип действия

Рис. 4. Принцип действия

Рис. 5. Процесс лазерной очистки

Рис. 5. Процесс лазерной очистки

 

 

Регулируя мощность излучения, скорость сканирования и режим очистки, можно с высокой точностью контролировать количество удаляемого инородного материала.

 

Технология лазерной очистки в большинстве случаев превосходит по эффективности другие известные методы промышленной очистки и не имеет их недостатков. Лазерная очистка с широким спектром действия является самым чистым методом индустриальной очистки, так как воздействует только на тот слой, который требуется удалить, оставляя базовый материал нетронутым. При этом эффективность процесса значительно увеличивается.

 

При соблюдении минимальных требований ТБ и правильном подборе средств индивидуальной защиты процесс лазерной очистки является абсолютно безопасным для оператора и окружающего персонала.

 

К преимуществам технологии можно отнести следующее:

  • Электроэнергия является единственным потребляемым ресурсом.
  • Обрабатываемый материал не разрушается в процессе воздействия.
  • Более высокая степень отчистки достигается путем регулировок и подбора режимов работы.
  • Легкость применения и интеграция в технологические процессы.
  • Отсутствие отходов, только пыль.
  • Возможно локальное и ограниченное по площади воздействие.
  • Возможно селективное и послойное снятие обрабатываемых слоев.
  • Низкий уровень шума.
  • Отсутствие необходимости переоснащения.
  • Низкая эксплуатационная стоимость.
  • Надежность.

 

ПРИМЕНЕНИЕ

 

Основными видами применения лазерной очистки являются:
1. Очистка поверхности металла (рис. 6): от точечной коррозии, от ржавчины, обезжиривание.

 

Рис. 6. Очистка уплотняющих поверхностей

Рис. 6. Очистка уплотняющих поверхностей

2. Подготовка ответственных деталей к дефектоскопии (рис. 7):

  • очистка сварных швов сосудов, работающих под давлением,
  • очистка сварных швов и соединений нагруженных элементов и конструкций,
  • очистка сварных швов от продуктов сварки перед покраской.

 

Рис. 7. Подготовка деталей к дефектоскопии

Рис. 7. Подготовка деталей к дефектоскопии

 

3. Очистка вращающегося оборудования:

  • обслуживание оборудования и машин: грузовой техники, двигателей внутреннего сгорания, газотурбинных установок, электрических контактов, теплообменных аппаратов.

4. Подготовка к нанесению покрытий:

  • подготовка металлических поверхностей к нанесению ЛКМ и антикоррозионных покрытий (рис. 8),
  • удаление цвета побежалости с поверхностей нержавеющей стали.

Рис. 8. Снятие лакокрасочных покрытий (ЛКП)

Рис. 8. Снятие лакокрасочных покрытий (ЛКП)

 

5. Снятие покрытий и обезжиривание:

  • снятие краски с поверхности оборудования и инфраструктуры,
  • удаление специальных покрытий.

6. Очистка пресс форм.
7. Дезактивация радицонно загрязненных поверхностей.

 

ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ ТЕХНОЛОГИИ ЛАЗЕРНОЙ ОЧИСТКИ В ПРОМЫШЛЕНОСТИ

 

Удаление ржавчины с поверхности (рис. 9).
Ржавчина является самым распространенным видом загрязнения, образующимся в ходе реакции железа и его сплавов, таких как сталь с кислородом, в присутствии воды или влажного воздуха. Лазерная очистка позволяет очищать металлические поверхности различной конфигурации и формы, от самых простых до самых сложных, от самых недоступных крошечных мест до поверхностей с большой площадью. По сравнению с традиционными видами очистки лазерная очистка не оставляет побочных видов загрязнений (дробь, песок, СО2, химические реагенты и т. д.) и не требует дополнительных ресурсов, только электричества.

 

Рис. 9. Снятие ржавчины с поверхности металла

Рис. 9. Снятие ржавчины с поверхности металла

 

ОЧИСТКА ШВА НЕРЖАВЕЮЩЕЙ СТАЛИ ПОСЛЕ СВАРКИ (рис. 10).
Независимо от вида сварки (автоматизированной или ручной) лазерная очистка с легкостью удаляет цвет побежалости с поверхностей нержавеющих сталей. Данная технология позволяет избежать использования химических реагентов и значительно сократить время, необходимое для очистки изделий.

Рис. 10. Снятие цвета побежалости

Рис. 10. Снятие цвета побежалости

 

ОЧИСТКА СВАРНОГО ШВА СТАЛИ ПЕРЕД ДЕФЕКТОСКОПИЕЙ (рис. 11).

Лазерная очистка позволяет очищать металлические поверхности различной конфигурации и форм. Обезжиривает и подготавливает сварной шов и пространство вокруг шва к дальнейшей дефектоскопии. Сфокусированный лазерный импульс позволяет с легкостью проникать в мелкие трещины и впадины, находящиеся на поверхности обрабатываемого материала, и удалять инородный слой, чего невозможно достичь при механической обработке.

 

Рис. 11. Очистка сварного шва

Рис. 11. Очистка сварного шва

 

ОЧИСТКА ПОВЕРХНОСТИ АЛЮМИНИЯ ОТ ОКСИДНОЙ ПЛЕНКИ (рис. 12).
Оксидный слой, или оксидная пленка, возникает на поверхности алюминия или сплавов на его основе при естественном контакте с окружающей средой, т. е. в процессе окисления кислородом. В свою очередь, оксидный слой служит для защиты изделий от дальнейшего коррозионного воздействия, но может оказывать неблагоприятное воздействие на технологический процесс при дальнейшем сваривании или склеивании. Лазерная очистка позволяет снимать данный оксидный слой с поверхности, тем самым улучшая адгезию или свариваемость.

 

Рис. 12. Снятие оксидного слоя

Рис. 12. Снятие оксидного слоя

 

УДАЛЕНИЕ ЛКМ С ПОВЕРХНОСТИ МЕТАЛЛА СЛОЙ ЗА СЛОЕМ (рис. 13).
Оборудование лазерной очистки позволяет произвести полное, селективное (послойное) удаление ЛКП с различных поверхностей металлов. Данный результат достигается при правильно подобранном режиме обработки за счет использования специального программного обеспечения, мощности излучения и подходящей оптической линзы.

 

Рис. 13. Селективное (послойное) снятие ЛКП

Рис. 13. Селективное (послойное) снятие ЛКП

 

ОЧИСТКА СТАЛИ ОТ НАГАРА (рис. 14).
Лазерная очистка с легкостью и без повреждения обрабатываемой поверхности может снимать следы нагара, вызванные контактом с горячими нефтепродуктами (например, масло или нефть). Также с помощью лазера можно с легкостью удалять следы и остатки продуктов, возникающие после вулканизации сырой резины.

 

Рис. 14. Снятие следов нагара, масла и нефтепродуктов

Рис. 14. Снятие следов нагара, масла и нефтепродуктов

Рис. 14. Снятие следов нагара, масла и нефтепродуктов

 

Обезжиривание в обрабатывающей промышленности (рис. 15).
Процесс обезжиривания может быть запущен в конце технологической линии вместо окончательного очищающего раствора для удаления грязи, влаги или других загрязнений. В результате вы получаете чистый продукт, готовый для продажи клиенту.
Обезжиривание также может быть частью большого технологического процесса перед клейкой, сваркой и нанесением покрытий.

 

 

ОБОРУДОВАНИЕ

 

В промышленных целях используются: установки различной мощности: 50, 100, 500, 1000 Вт.
Системы с мощностью 500 и 1000 Вт имеют очень высокую производительность: ~10–40 м2/час. Для локальной очистки достаточно 100 Вт. При этом установки могут быть в компактном или мобильных исполнениях корпуса. Данные системы также имеют высокую производительность ~5–10 м2/час. Длина оптоволоконного кабеля может быть до 3–10 м.

 

Компания «DY-Laser» — более чем 25-летний опыт работы в области промышленной очистки в различных отраслях промышленности и социальной сферы.

 

Региональный эксклюзивный дистрибьютор
P‑laser в РФ и странах СНГ
г. Химки, Ленинградская ул., д. 39, стр. 6
Телефон: +7 (495) 201 41 98
www.DY-laser.ru; e‑mail: sales@DY-laser.ru

 

Источник журнал "РИТМ машиностроения" № 7-2019

 

 

 

Внимание!
Принимаем к размещению новости, статьи
или пресс-релизы с ссылками и изображениями.
ritm@gardesmash.com

 

Реклама наших партнеров