Подписка

Интерес к новым технологиям, которые позволяют оптимизировать производство и меняют существующие бизнес-модели, неизменно растет. У технических специалистов, желающих разобраться во всех тонкостях инновационных методов, естественно, возникает масса вопросов. В данном материале, посвященном 3D-сканированию, своими знаниями и опытом делится технический эксперт iQB Technologies, кандидат технических наук Григорий Аватинян.

технический эксперт iQB Technologies, кандидат технических наук Григорий Аватинян

 

 

Сколько стоят 3D-сканеры и услуги 3D-сканирования?

Стоимость оборудования зависит от размеров объектов, которые предполагается сканировать, решаемых задач, требуемых параметров точности, разрешения и производительности, а также от наличия метрологических сертификатов.
Цены на профессиональные устройства, предлагаемые компанией iQB Technologies, варьируются в диапазоне от 700 тысяч до 13,5 млн рублей. Высокая стоимость 3D-сканеров обусловлена тем, что это сложные высокотехнологичные измерительные приборы, имеющие метрологические сертификаты и обеспечивающие существенные преимущества перед традиционными средствами измерений. Иногда выгоднее выполнять 3D-сканирование на заказ.

 

 

Какой точности можно добиться при 3D-сканировании?

Здесь нужно иметь в виду габариты объекта сканирования, цели сканирования (контроль геометрии, реверс-инжиниринг), особенности геометрии и структуры поверхности. Исходя из этих факторов подбирается технология и соответствующее оборудование и ПО.

 

Портативные 3D-сканеры Creaform предлагают наилучшие показатели точности в своей категории — до 25 микрон (объемная точность — до 78 микрон на 16 кубических метров). Кстати, новая модель MetraSCAN BLACK|Elite еще и самая быстрая в классе ручных лазерных сканеров — до 1 млн 800 тыс. измерений в секунду.

 

Если нужна еще более высокая точность, понадобится стационарный 3D-сканер. Устройства Solutionix на минимальной зоне сканирования могут по факту получать отклонение на эталонах в пределах 2–3 микрон. Но стационарное (настольное) оборудование предназначено для сканирования изделий несколько меньших габаритных размеров. Например, Solutionix C500 (рис. 1) подходит для деталей размером от единиц миллиметров до полуметра. У ручного же сканера таких ограничений нет, здесь диапазон габаритов — от десятков миллиметров до нескольких метров.

 

 

Рис. 1. Стационарный 3D-сканер Solutionix C500

Рис. 1. Стационарный 3D-сканер Solutionix C500
 

 

Дальномерные лазерные сканеры (такие как FARO серии Focus), применяемые для измерения зданий, ландшафтов и других крупных объектов размерами до 350 метров, обеспечивают точность до 200 микрон (в зависимости от размеров объекта).

 

 

При какой температуре и при каком освещении можно проводить 3D-сканирование?

3D-сканеры приспособлены для работы не только в метрологической лаборатории, но и непосредственно на месте — в цеху, на производственном участке, на открытом объекте и т. д. Ручные 3D-сканеры (Creaform HandySCAN 3D, Go!SCAN 3D, MetraSCAN 3D, линейка peel 3d) обладают повышенной портативностью и специально заточены под мобильное применение.

 

Требования к чистоте и температуре воздуха — такие же, как для любого офиса или рабочего помещения. Естественно, нежелательно сильное загрязнение, масляная пыль в воздухе, запыление, поскольку это вредно для оптики. Некоторые сканеры, к примеру Solutionix, оснащены вентилятором охлаждения и пылевым фильтром, предотвращающим загрязнение оптики внутри устройства.

 

Лазерные дальномерные сканеры типа FARO (рис. 2) специально рассчитаны на работу в сложных условиях и обеспечивают защиту от пыли, мусора и водяных брызг (класс защиты IP 54).

 

 

Рис. 2. Результат сканирования памятника с помощью лазерного дальномера FARO Focus S150 (проект iQB Technologies)

Рис. 2. Результат сканирования памятника с помощью лазерного дальномера FARO Focus S150 (проект iQB Technologies)

 

 

Дневное или офисное освещение не влияет на качество сканирования. Сканер подсвечивает объект светодиодами и лазерами, используя специально спроектированную высококачественную оптику. Скорее всего, в оборудовании есть поляризационные фильтры и фильтры на длину волны лазера, благодаря чему сканер отфильтровывает шумы и «видит» объект сканирования так, как нужно ему. А вы, используя свое обычное освещение, видите деталь так, как нужно вам.

 

 

 

Как производится сканирование моделей с различной оптической плотностью? Реально ли оцифровать объект с блестящей или черной поверхностью?

Если поверхность модели матовая (то есть обеспечивает рассеивание попадающего на нее света), то 3D-сканер захватит ее без проблем. Полированная же поверхность, ввиду отсутствия шероховатости, отражает почти весь свет, излучаемый устройством подсветки сканера в сторону от его камер. Из-за этого отраженный сигнал, возвращающийся в камеры, имеет низкую интенсивность. По этой причине полированную или глянцевую поверхность необходимо матировать специальным спреем, который не вносит существенных искажений, поскольку у него субмикронный размер частиц, что позволяет добиться рассеивания на поверхности и получения обратного сигнала в камерах.

 

Что касается изделий черного цвета, его поглощающие свойства возможно нивелировать временем экспозиции, которая настраивается в процессе сканирования. Проблема с бликующей гладкой поверхностью характерна для стационарных устройств, в которых подсветка выполняется проектором. В случае, если черная деталь бликует, потребуется легкое матирование.

 

Необходимо отметить, что портативные 3D-сканеры Creaform, такие как HandySCAN BLACK|Elite (рис. 3), благодаря технологическим усовершенствованиям, лазерной подсветке, различным программным и аппаратным методам позволяют сканировать полированные, бликующие и черные поверхности без матирования.

 

Рис. 3. Портативный лазерный 3D-сканер Creaform HandySCAN BLACK

Рис. 3. Портативный лазерный 3D-сканер Creaform HandySCAN BLACK
 

 

Возможно ли получить качественный скан в условиях вибрации?

Ручные 3D-сканеры с лазерной подсветкой компании Creaform позволяют выполнять сканирование в условиях вибраций и даже тряски. Достигается это тем, что подсветка сеткой и запись геометрии объекта сканирования выполняется с высокой частотой (около 60 раз в секунду), что позволяет сканеру двигаться относительно объекта при сканировании.

 

 

Обязательно ли использовать позиционные метки для ручных 3D-сканеров?

Зависит от модели сканера. Например, для флагманских лазерных сканеров BLACK|Elite компании Creaform они необходимы, поскольку являются самой точной мерой для определения относительного положения сканера и деталей. Позиционные метки могут быть многоразовые магнитные и требуются в не очень большом количестве — они наклеиваются с шагом порядка 100 мм. Метки необязательно размещать на самой детали, можно просто разложить их на столе вокруг детали и сканировать ее с одной и с другой стороны, получая два промежуточных скана. Затем эти два скана детали с двух сторон сшиваются по особенностям геометрии ее поверхности, которые используются программным обеспечением наподобие ориентиров.
Некоторые 3D-сканеры способны выполнять запись геометрии детали без меток, ориентируясь на особенности геометрии изделия, отверстия, рифления на поверхности, а также на текстуру. Такая функция есть у сканера Creafrom Go!SCAN SPARK, работающего по технологии структурированного белого подсвета.

 

 

Можно ли отсканировать не всю деталь, а только ее часть?

Да. Необязательно сканировать всю деталь — как при обратном проектировании, так и при контроле геометрии.
Для реверс-инжиниринга вам нужно только отсканировать геометрию поверхностей-примитивов детали, представляющих интерес, — цилиндров, сфер, плоскостей и т. д., а затем вы уже сможете смоделировать их в параметрическом виде по отсканированным данным в программном обеспечении Geomagic Design X и получить параметрическую модель. Захват сканером только интересующих вас поверхностей позволяет значительно сэкономить время.

 

То же самое при контроле геометрии: вы можете, например, проконтролировать диаметр цилиндра или отсканировать выступающую часть и посчитать ее объем, отрезав ее от детали. Сканером можно захватить только критические места, так, чтобы потом совместить CAD-модель с этими отсканированными участками и получить цветовую карту отклонений в нужных местах.

 

 

А как насчет возможности повторного сканирования?

Зоны, которые вызвали проблему, можно сканировать повторно. Просто надо понимать, что если вы выполнили переустановку детали, то она уже неизбежно располагается в немного другом положении относительно предыдущих сканов. Если вы хотите использовать и предыдущие сканы, нужно будет выполнить сшивание программными методами. Но при относительно большой площади перекрытия — хотя бы процентов 30–40 — точность будет высокая, потому что сетка, получаемая со сканера, очень мелкая, высокодетализированная, и объем данных о геометрии в зонах перекрытия промежуточных сканов будет очень большой. Соответственно, большим будет и объем данных у программного обеспечения для уточнения взаимного расположения двух частей модели (промежуточных сканов).

 

 

Можно ли с помощью 3D-сканера контролировать качество деталей поточно?

Да, у компании Creaform есть решения для автоматизации процесса контроля. Они предназначены для проверки деталей на конвейере, а также для автоматизированного контроля в отдельной зоне. Эти решения отличаются очень широкими возможностями, особенностями и нюансами работы. Применение оборудования для поточного контроля деталей на производстве предполагает интеграцию в технологические циклы и маршруты предприятия, серьезнейшую проработку задач заказчика и анализ требований к процессу контроля (точности, скорости, видам изделий и т. д.), так как стоимость таких решений, конечно, выше.

 

Вот краткая характеристика таких решений компании Creaform. Во-первых, это MetraSCAN 3D-R — сканер, который устанавливается на роботизированную руку. Во-вторых, это CUBE-R — система 3D-сканирования с рукой-роботом и поворотным столом, располагаемая в огороженной зоне автоматизированного контроля с числовым программным управлением. Она позволяет проверять до 660 деталей в день. Первое решение предназначено для проверки продукции на конвейере, а CUBE-R — для автоматизированного контроля уже за пределами конвейера.

 

 

Каковы системные требования при работе с данными сканирования?

Потребуется мощный процессор, желательно четырехъядерный, восьмипоточный, как можно больше оперативной памяти (рекомендуется 32 ГБ) и современная видеокарта 4–8 ГБ. Также крайне желательно для сокращения времени выполнения обращений к диску иметь на компьютере в качестве операционного носителя SSD-накопитель на 512 ГБ или 1 ТБ с малым временем отклика.

 

 

Способен ли сканер определять допуски без компьютера?

3D-сканер представляет собой устройство сбора данных со своей аппаратной частью и прошивкой и не предполагает установки какого-то дополнительного ПО. Для работы такого софта потребуются дополнительные вычислительные мощности, которые сильно повлияли бы на процесс сканирования, вес прибора, его надежность и многие другие нюансы.

 

Даже если подобное решение реализуемо, оно не будет технически эффективным и экономически успешным. Наилучший вариант на сегодня — использование 3D-сканера как высокоточного поверенного метрологического сенсора совместно с персональным компьютером, на котором уже установлено программное обеспечение. Самые качественные и универсальные программы предлагает компания 3D Systems: это, в первую очередь, Geomagic Control X для контроля геометрии и Geomagic Design X — для обратного проектирования.

 

 

Внесено ли оборудование для 3D-сканирования в Госреестр?

Многие модели 3D-сканеров внесены или вносятся в настоящее время в Государственный реестр средств измерений, это не является проблемой для 3D-сканеров лидирующих мировых производителей (Creaform, Solutionix). Они проходят как поверку по методикам Российской Федерации, так и сертификацию по международным методикам. Например, совсем недавно, в июле 2020 года, в Госреестре СИ появились модели HandySCAN BLACK и Go!SCAN SPARK от Creaform. Теперь они могут проходить ежегодную поверку с выдачей свидетельства государственного образца.

 

 

В чем разница между цветом сканирующего лазера — красного и синего?

Разница заключается в длине волны, и каждый из видов подсветки имеет свои особенности работы. У красного цвета длина волны 650 нм, а у синего — 445 нм, и меньшая длина волны, соответственно, позволяет лучше подсвечивать бликующие поверхности за счет более интенсивного рассеивания света на микродефектах поверхности, пусть даже и очень гладкой. Рассеивание же на поверхности объекта сканирования требуется для того, чтобы изображение линий подсветки было видно камерам сканера, то есть чтобы в них вернулась часть излучения от лазерного устройства подсветки, а не отразилась в сторону под углом, равным углу падения.

 

У вопроса о выборе типа устройства подсветки 3D-сканера (проектор или лазерное) есть несколько технических нюансов. Проектор обеспечивает большую выборку данных сканирования, поскольку он может формировать различную сетку, различный рисунок линий подсветки на большей площади объекта сканирования. Лазерное же устройство подсветки формирует поворачивающимися с большой угловой скоростью лучами только несколько пересекающихся линий, но много раз в секунду. Кроме того, в движущемся по линии лазерном пятне плотность мощности больше, чем в проекторе, где один источник света подсвечивает через маску всю площадь зоны сканирования, а лазерный луч практически всю энергию доставляет в маленькое световое пятно. То есть получается очень четкая тонкая яркая линия, которая хорошо видна даже на бликующих поверхностях. Впрочем, успешное сканирование таких поверхностей обеспечивается в том числе и программными средствами обработки сигнала. Также тонкая линия лазерного устройства подсветки способствует быстрому и точному захвату геометрии поверхности объекта сканирования с большой частотой кадров, что сводит к минимуму влияние вибраций и покачивания ручного сканера на точность собираемых данных.

 

 

Каков минимальный размер сканируемого отверстия?

Он определяется тем, c каким пространственным шагом сетки выполняется сканирование. У ручного 3D-сканера Creaform HandySCAN BLACK|Elite минимальный шаг сетки составляет 100 микрон, или 0,1 мм (это толщина офисного листа бумаги). Если отверстие близко к шагу сетки или меньше, то, естественно, захватить его контуры будет крайне трудно. Поэтому тонкие отверстия целесообразно сканировать с минимальным шагом сетки.

 

Преимущество сканеров Creaform в том, что, оцифровав деталь с крупным шагом сетки, он уже соберет максимальный объем информации через оптическую систему. И если вам нужно уточнить положение отверстий, которые выглядят грубыми при сканировании с большим шагом, можно просто указать меньшее значение шага сетки, и программное обеспечение произведет перерасчет сетки без повторного сканирования. Кромки отверстия станут более четкими, более детализированными. Это позволит гораздо более точно определить положение центра границы отверстия, даже если оно тонкое.

 

 

 

Как будет происходить сканирование резьбы на примере гайки? И всю ли резьбу получится отсканировать?

Сканирование внутренних отверстий, в том числе с резьбой, возможно, но на глубину не более 1–1,5 диаметров — зависит от диаметра отверстия. Чем тоньше отверстие, тем на меньшую глубину оно будет захвачено по геометрии. Если резьба внешняя и ее шаг выше 100 микрон, она может быть отсканирована — сканер способен записать геометрию витков резьбы. Тогда можно будет контролировать форму профиля витков резьбы, шаг, диаметры. Как было сказано выше, для этого подойдет ручной 3D-сканер Creaform HandySCAN BLACK|Elite или стационарный 3D-сканер.

 

Гайка имеет небольшую высоту, и если диаметр ее резьбового отверстия будет 10–20 мм, то резьба (по крайней мере, шаг резьбы) будет довольно точно отображен в 3D-модели. Полностью все витки захватить не получится, но для обратного проектирования это и не требуется. Для экономии времени при реверс-инжиниринге различных деталей можно захватывать с большой выборкой (с максимальным покрытием) только те поверхности, которые нам нужны: плоскость, сферу, конусы и прочие, ограничивающие тело объекта. И если захвачена, скажем, половина сферы, этого уже может быть достаточно для построения полной сферы в CAD-модели.

 

 

Что вы посоветуете для сканирования криволинейной поверхности — например, днища с ориентировочными размерами 4,2 на 1,5 метра?

Все зависит от того, какая вам нужна точность сканирования. Для объектов сложной геометрии с такими габаритами можно использовать флагманские ручные 3D-сканеры Creaform — Go!SCAN SPARK, HandySCAN BLACK|Elite или MetraSCAN BLACK|Elite. Эти устройства обеспечивают точность измерений до 0,25–0,05 мм. Если нужны более высокие показатели, то вам, возможно, потребуется еще система фотограмметрии Creaform MaxSHOT 3D. Она позволяет, используя информацию с внешнего поста наблюдения — фотограмметрической ручной цифровой фотокамеры (то есть фотоснимки масштабных линеек и кодированных меток наряду с метками 3D-сканера), уточнять данные 3D-сканирования габаритных объектов.

 

Среди портативных устройств Creaform модели линейки MetraSCAN имеют то преимущество, что они работают в паре с оптическим трекером C-Track, который отслеживает движения MetraSCAN в пространстве, и вам не потребуется наклеивать позиционные метки на поверхность детали. Если же деталь не попадет в измерительный объем трекера, то нужно будет переставлять трекер с места на место, и в этом случае небольшое количество меток все-таки понадобится.

 

 

Как сшиваются части модели при использовании стационарного 3D-сканера?

При одной установке на поворотном столе стационарного сканера участки захваченной в разных ракурсах геометрии сшиваются автоматически, поскольку деталь не сдвигается относительно стола при его повороте и захвате ракурсов-участков геометрии детали. А после переустановки модели производится сшивание уже промежуточных сканов по характерным особенностям геометрии, которые могут быть выделены на двух полученных сканах с разных установок.

 

После того как были выделены характерные точки сканов с двух установок, программа по очень большой выборке два этих участка геометрии сшивает с высокой точностью, при этом показывая ошибку совмещения, которая при этом неизбежно возникнет. Но для этого нужно указать некие характерные особенности геометрии, присутствующие на обоих сшиваемых в пару сканах: царапину, которую захватил сканер, или заусенец, или несимметрично расположенные отверстия. Если деталь идеально осесимметричная, скажем, вал, но его нужно сканировать с двух установок — такое бывает, — то вам, может быть, нужно просто наклеить позиционную метку или закрепить кусок пластилина на модели и потом использовать его как ориентир. А отверстие, которое вы получите после вырезания со скана этого куска пластилина или метки, можно даже не закрывать, поскольку при обратном проектировании все равно останется большая выборка данных с 3D-сканера, описывающих эту цилиндрическую поверхность.
Если вам нужно сразу печатать модель, сделав ее герметичной, программа Geomagic Design X и даже ПО ezScan, идущее в комплекте с 3D-сканерами Solutionix, позволяет закрывать отверстие. Если это делается программно в полигональной модели без построения параметрической, отверстие может быть очень точно закрыто по образующей, например, цилиндра, и этот кусок пластилина не будет представлять проблем. Такой прием используется для сканирования, сшивания деталей без особенностей геометрии. При наличии особенностей геометрии программа будет по очень большой выборке сшивать два скана, подгоняя их взаимное расположение, поскольку вы должны сканировать так, что площадь перекрытия двух сканов с двух установок будет очень большая, что обеспечивает большую выборку данных для совмещения.

 

Описанные здесь принципы сшивания сканов, приемы сканирования симметричных объектов, например, вырезание со скана ориентира в виде куска пластилина или позиционной метки, актуально и для процесса сканирования ручными 3D-сканерами, кроме тех, что связаны с автоматическим поворотным столом.

 

 

Как производится сравнение 3D-модели, полученной в результате сканирования, с CAD-моделью?

Когда вам нужно выполнить контроль геометрии детали, у вас должен быть либо чертеж на нее, либо твердотельная CAD-модель. Чертеж дает, естественно, только линейные размеры, радиусы, угловые размеры и допустимые отклонения. Таким образом, вы можете либо использовать сравнение с имеющейся CAD-моделью, либо снимать размеры прямо со сканируемой модели.

 

Оцифровав деталь, вы получаете облако точек, то есть полигональную модель. Если у вас есть CAD-модель, то с помощью специализированного программного обеспечения, совместно используемого со сканером (оптимальный вариант — Geomagic Control X), вы совмещаете отсканированную модель с CAD-моделью, получаете цветовую карту отклонений и расположение поверхностей.

 

Если CAD-модели нет, а есть только информация о необходимых размерах — скажем, с чертежа, — вы можете в том же ПО снимать размеры прямо с полигональной модели, совмещая геометрические примитивы (плоскости, математические цилиндры и т. д.) с этой отсканированной моделью. Таким образом, вы получите размеры модели так, как будто вы ощупываете ее координаты на измерительной машине или обмеряете штангенциркулем. Причем в дальнейшем вы сможете это делать без доступа к реальной детали, если она, к примеру, была разрушена или утрачена на испытании. Кроме того, у вас появляется возможность сохранить модель в цифровом архиве — это еще одно важное преимущество 3D-сканирования.

 

 

Интересует процесс и способы построения твердотельной модели.

Получив в результате сканирования полигональную модель, вы импортируете ее в программное обеспечение, например, в Geomagic Design X.
Далее вы, определив, где у вас геометрические примитивы в виде цилиндров, сфер, конусов, торов, плоскостей и т. д. (они распознаются в автоматическом режиме программой Design X), простраиваете их в программном обеспечении методами, хорошо известными из CAD-систем: вытягивание-вращение, вытягивание-вырезание, вытягивание по траектории, обрезание поверхности. Таким образом вы получаете параметрическую твердотельную CAD-модель.

 

Программное обеспечение 3D-сканеров (VXelements у Creaform, ezScan у Solutionix и пр.), как правило, имеет функцию оптимизации сетки. Однако более широкие возможности предоставляет ПО Geomagic или программные продукты компании Materialise для подготовки моделей к 3D-печати.

 

Если у вас плоскость или большой радиус кривизны поверхности, то в этом месте сетка будет более грубой без потери точности, поскольку большой радиус кривизны ближе к плоскости. На тонких кромках сканер автоматически делает шаг сетки мельче, и предельно маленький шаг сетки, если взять в качестве примера стационарные сканеры Solutionix D700 и C500, будет равен 28–29 микрон. Но на тонких кромках, если рассмотреть модель и померить расстояние, я видел, расстояние между точками может быть еще меньше. То есть сканер, используя данные, уточняет сетку на тонких кромках, делая ее более частой. Таким образом, результирующая сетка получается в некоторых местах даже с меньшим шагом, чем заявлено в характеристиках сканера.
Приведем пример построения твердотельной модели крыльчатки в Geomagic Design X (рис. 4). Поверхность крыльчатки ограничена некой параметрической поверхностью. Ее можно получить, во‑первых, автоматическим подгоном по сетке параметрической поверхности — такая функция есть в Design X.

 

Рис. 4. Построение твердотельной модели крыльчатки в Geomagic Design X

Рис. 4. Построение твердотельной модели крыльчатки в Geomagic Design X

 

Во-вторых, мы можем построить по сетке как по 3D-ориентиру несколько сечений лопатки и через них провести также параметрическую поверхность, которую мы будем использовать для построения твердого тела между сечениями лопатки. Это можно сделать как в полуавтоматическом, так и в ручном режиме. В последнем случае поверхность между сечениями создается автоматически, но сечение лопатки, которое мы хотим создать, выбирается вручную.

 

В Geomagic Design X есть и полностью автоматическая функция — автоповерхность, когда весь 3D-скан покрывается участками параметрических поверхностей, но при этом у вас почти не будет геометрических примитивов, поскольку программа использует автоматическую подгонку. Применение этой функции не всегда эффективно, оптимальное решение — это человеческое участие. Все зависит от конкретной задачи.

 

Итак, созданная в результате 3D-сканирования полигональная модель импортируется в программное обеспечение Geomagic Design X, затем полученные примитивы можно импортировать в SolidWorks. Другая возможность — уже построенное в Geomagic твердое тело можно напрямую импортировать в SolidWorks в редактируемом параметрически виде, с деревом построения. Также есть плагин Geomagic for SolidWorks, позволяющий строить CAD-модель по облаку точек прямо в SolidWorks, расширяя тем самым его функционал по работе с облаками точек. Такие подходы к решению задач обратного проектирования позволяют выбрать оптимальное решение для каждой задачи.

 

 

Можно ли выполнить реверс-инжиниринг детали при отсутствии полноценной полигональной модели?

Выше был приведен пример того, что для обратного проектирования не нужна полная, стопроцентно отсканированная полигональная модель. К примеру, вы захватили достаточно информации, чтобы знать, где у вас цилиндрическая поверхность, где плоскость, где, например, коническая фаска, и при этом у вас в сетке могут быть пробелы, на сканирование и закрытие которых не хватило времени, либо они находятся в труднодоступных местах. И если отсканированных данных достаточно для дальнейшего построения примитивов, то можно обойтись без полной модели. Грубо говоря, вам необходимо точно определить, где в параметрической модели по скану располагаются плоскости, цилиндры и прочие геометрические примитивы, которые потом будут объединяться в цельную параметрическую модель. Это позволяет экономить время на сканировании.

 

Другими словами, скан используется не как шаблон, а как высокоточный трехмерный ориентир для построения примитивов, по которым будет получена параметрическая, идеальная с математической точки зрения CAD-модель.

 

 

Возможен ли импорт отсканированной модели напрямую в 3D-принтер?

Важно определиться с понятием импорта отсканированной модели напрямую в 3D-принтер. 3D-сканер является лишь высокоточным сенсором сбора данных о геометрии детали. Роль рекордера и обработчика данных выполняет ПК. После сканирования сразу с ПК можно отправлять отсканированную деталь на печать при условии ее пригодности к печати, конечно. Об этом ниже.

 

Готовую отсканированную модель можно отправить сразу на 3D-печать в виде STL-файла. Если деталь оцифрована не полностью, то с большой долей вероятности при слайсинге (нарезке на слои) поверхностей, отсканированных с пробелами, появятся искажения и печать может выйти некачественной. Во многом это зависит от 3D-принтера и ПО. Поэтому я бы рекомендовал отсканировать модель по возможности полностью или закрыть пробелы и исправить ошибки программно (например, в программном обеспечении Materialise Magics) в самой модели до печати.

 

Если вы не смогли отсканировать какие-то элементы — предположим, глубоко расположенные поверхности в отверстии, вы можете закрыть отверстия в 3D-модели опять же с помощью программного обеспечения для аддитивного производства Magics и избежать ошибок при печати. Такой пример я уже приводил выше.

 

Сохранить/выгрузить модель для 3D-печати можно прямо с 3D-сканера через его ПО. 3D-принтеры, как правило, требуют полигональную модель для слайсинга и послойного воспроизведения.

 

 

Блог iQB Technologies
https://blog.iqb.ru

 

 

Источник журнал "РИТМ машиностроения" № 8-2020

 

 

 

 

Внимание!
Принимаем к размещению новости, статьи
или пресс-релизы с ссылками и изображениями.
ritm@gardesmash.com

 

Реклама наших партнеров